SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	MACHINE SHOP	
Code No.:	MCH 106-2	
Program:	WELDING & FABRICATING	
Semester:	TWO	
Date:	1989 06 12	
uthor:	R. ZUCCATO	
		VV
	New:	Revision:
APPROVED:	Chairperson Murphy	Date 13/84

TEXT - MACHINE SHOP TRAINING

1 2		CH.2/P.3-4 CH.3/P.5-6
3 4 5 6	MEASUREMENT - Binary system (the steel rule) - Decimal system (the micrometer .001 - the Vernier principle .0001" - the Vernier Caliper - construction - graduation	P.13 P.13-14
7 8 9	LAYOUT - definition; preparing the surface - use of layout tools; layout table - layout operations	CH.5/P17-24 P.17 P.17 P./18-24
10 11 12 13 14 15 15(a) 16 17 18	- chiselscommon types, sharpening - files; filing - taps in a setnational Thread Seri - calculate the tap drill size - classification of twist drills - tapping a hole with tap and tap wre - threading dies; threading with stoc & die - metal fasteners; wrenches THE POWER SAW - cut off saw - parts; saw blades	P.34-35 P.35-37 P.37-38 P.38-40 P.41 P.42-42 P.62&162 nch P.43
	ASSIGNMENT QUESTIONS	P.57
22 23 24 25 26 27 28 29 30 31	THE DRILL PRESS - drill press parts - drill holding devices - twist drill parts - systems of drill sizes - speeds and feeds of drills - cutting oils and cutting compounds - combination drill and countersink - work holding devices - drill to a layout - countersinking; counterboring - reaming; boring; spotfacing	.9/P.58-70 P.58-59 P.59-60 P.60-61 P.62 P.62-63 P.63-64 P.64-65 P.65-67 P.67-68 P.69

Course Name

Course Number

PHILOSOPHY/GOALS:

To demonstrate the close working relationship and inter dependence that exists between the welding and machinist trade. Also to develop an awareness of the problems that arise when machining parts that are welded as well as preparing parts to be welded.

METHODS OF ASSESSMENT (GRADING METHOD):

Students will be assessed on attendance, initiative, co-operation and ability. Good attendance is of vital importance on any job and for this reason we stress it in this program. Generally good attendance is directly related to a students other qualities or abilities.

THEORY TESTS - 40% LAB ASSIGNMENTS - 40% ATTENDANCE - 20%

TEXTBOOK(S):

MACHINE SHOP TRAINING - BY S.F. KRAR 4TH EDITION

OBJECTIVES:

To become familiar with and use hand tools, measuring tools, power tools and metal cutting machines used in the machinist trade.

To machine parts to close tolerances outlined on shop drawings or the working relationship between one part and another.

To develop a working knowledge of machining various types of metals and materials on different machine tools with a variety of cutters depending on the application required for a particular job or part.

TOPIC NO.	PERIODS TOPIC DESCRIPTION	REFERENCE
	THE LATHE	CH.10/P.73-106
33	 identification of main parts; 	
	function of each	P.73-75
34	- select speeds and feeds	P. 76
35	- calculate spindle speed	P.77-78
36	 work holding devices 	P.79-82
37	- alignment of lathe centres	P.82
38	- end facing	P.84
39	 decimal equivalents; micrometer 	
	collars	P.85
40	 basic turning operations - 	
	rough turning	P.85
	-finish turning	P.86
41	 standard tapers used in industr 	
42	 taper calculations 	P.90-91
43	 taper turning - offset tailstoc 	k
	method	P.91-92
44	 turn tapers and angles - using 	
	compound rest	P.92
45	- fit a taper to a gauge	P.93-94
	LATHE CHUCKS - UNIVERSAL, INDEPEN	DENT CH.10 P.94-98
46	 chucking operations 	
	STANDARD THREAD FORMS CH	.10/P.99-100
47	 thread terms(parts of a thread) 	
48	- thread formulae; calculations	P.100-101
49	 thread cutting on lathe 	P.101-105
50	- measuring the thread for size	P.106
51	 tapping a hole by power 	
	- drill press	P.70
	- lathe	P.98
	NON-FERROUS METALS USED IN INDUSTRY	CH.6./P.30
52	 turning soft metals 	
53	 drilling and tapping non-ferrou 	s metals
54	- reamers	
55	 reaming non-ferrous metals 	
	THE PEDESTAL GRINDER - PARTS	CH.13/P.143
	- DRESS AND TRUE A WHEEL	P.144-145
56	- sharpen chisels	
57	- sharpen lathe tool bits	P.145-146
58	sharpen twist drills(P.61)	P.147
	THE SURFACE GRINDER	CH.13/P.150-152
59	 truing and dressing a grinding 	
	wheel	P.151
60	- grind a flat surface	P.152
60	- grind a flat surface	